Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 296: 100205, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33334880

RESUMO

Acetylation is known to regulate the activity of cytosolic phosphoenolpyruvate carboxykinase (PCK1), a key enzyme in gluconeogenesis, by promoting the reverse reaction of the enzyme (converting phosphoenolpyruvate to oxaloacetate). It is also known that the histone acetyltransferase p300 can induce PCK1 acetylation in cells, but whether that is a direct or indirect function was not known. Here we initially set out to determine whether p300 can acetylate directly PCK1 in vitro. We report that p300 weakly acetylates PCK1, but surprisingly, using several techniques including protein crystallization, mass spectrometry, isothermal titration calorimetry, saturation-transfer difference nuclear magnetic resonance and molecular docking, we found that PCK1 is also able to acetylate itself using acetyl-CoA independently of p300. This reaction yielded an acetylated recombinant PCK1 with a 3-fold decrease in kcat without changes in Km for all substrates. Acetylation stoichiometry was determined for 14 residues, including residues lining the active site. Structural and kinetic analyses determined that site-directed acetylation of K244, located inside the active site, altered this site and rendered the enzyme inactive. In addition, we found that acetyl-CoA binding to the active site is specific and metal dependent. Our findings provide direct evidence for acetyl-CoA binding and chemical reaction with the active site of PCK1 and suggest a newly discovered regulatory mechanism of PCK1 during metabolic stress.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Acetilcoenzima A/metabolismo , Acetilação , Domínio Catalítico , Ativação Enzimática , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Simulação de Acoplamento Molecular , Fosfoenolpiruvato Carboxiquinase (GTP)/química
2.
Biomed Pharmacother ; 121: 109601, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31739159

RESUMO

BACKGROUND: Phosphoenolpyruvate carboxykinase (PEPCK) catalyzes the decarboxylation of oxaloacetate to phosphoenolpyruvate. The mitochondrial isozyme, PEPCK-M is highly expressed in cancer cells, where it plays a role in nutrient stress response. To date, pharmacological strategies to target this pathway have not been pursued. METHODS: A compound embodying a 3-alkyl-1,8-dibenzylxanthine nucleus (iPEPCK-2), was synthesized and successfully probed in silico on a PEPCK-M structural model. Potency and target engagement in vitro and in vivo were evaluated by kinetic and cellular thermal shift assays (CETSA). The compound and its target were validated in tumor growth models in vitro and in murine xenografts. RESULTS: Cross-inhibitory capacity and increased potency as compared to 3-MPA were confirmed in vitro and in vivo. Treatment with iPEPCK-2 inhibited cell growth and survival, especially in poor-nutrient environment, consistent with an impact on colony formation in soft agar. Finally, daily administration of the PEPCK-M inhibitor successfully inhibited tumor growth in two murine xenograft models as compared to vehicle, without weight loss, or any sign of apparent toxicity. CONCLUSION: We conclude that iPEPCK-2 is a compelling anticancer drug targeting PEPCK-M, a hallmark gene product involved in metabolic adaptations of the tumor.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Biomarcadores Tumorais/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Fosfoenolpiruvato Carboxiquinase (ATP)/antagonistas & inibidores , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Animais , Biomarcadores Tumorais/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Feminino , Células HCT116 , Células HEK293 , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Fosfoenolpiruvato Carboxiquinase (ATP)/genética , Estrutura Secundária de Proteína , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
3.
Mol Cell ; 71(5): 718-732.e9, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30193097

RESUMO

Cytosolic phosphoenolpyruvate carboxykinase (PCK1) is considered a gluconeogenic enzyme; however, its metabolic functions and regulatory mechanisms beyond gluconeogenesis are poorly understood. Here, we describe that dynamic acetylation of PCK1 interconverts the enzyme between gluconeogenic and anaplerotic activities. Under high glucose, p300-dependent hyperacetylation of PCK1 did not lead to protein degradation but instead increased the ability of PCK1 to perform the anaplerotic reaction, converting phosphoenolpyruvate to oxaloacetate. Lys91 acetylation destabilizes the active site of PCK1 and favors the reverse reaction. At low energy input, we demonstrate that SIRT1 deacetylates PCK1 and fully restores the gluconeogenic ability of PCK1. Additionally, we found that GSK3ß-mediated phosphorylation of PCK1 decreases acetylation and increases ubiquitination. Biochemical evidence suggests that serine phosphorylation adjacent to Lys91 stimulates SIRT1-dependent deacetylation of PCK1. This work reveals an unexpected capacity of hyperacetylated PCK1 to promote anaplerotic activity, and the intersection of post-translational control of PCK1 involving acetylation, phosphorylation, and ubiquitination.


Assuntos
Gluconeogênese/fisiologia , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Acetilação , Animais , Domínio Catalítico/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , Feminino , Glicogênio Sintase Quinase 3 beta/metabolismo , Células HEK293 , Células Hep G2 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Processamento de Proteína Pós-Traducional/fisiologia , Sirtuína 1/metabolismo , Ubiquitinação/fisiologia
4.
PLoS One ; 12(6): e0179988, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28644880

RESUMO

PGC1α is a coactivator of many transcription factors and cytosolic phosphoenolpyruvate carboxykinase (PCK1) is a key enzyme for gluconeogenesis. PGC1α interacts with the transcription factor PPARγ to stimulate PCK1 expression and thus de novo glucose synthesis. These proteins are not only important for central energy metabolism but also for supplying intermediates for other metabolic pathways, including lipidogenesis and protein synthesis and might therefore be important factors in the ethiopathogenesis of metabolic disorders like diabetes but also in other pathologies like cancer. Since polymorphisms in these proteins have been related to some phenotypic traits in animals like pigs and PGC1α G482S polymorphism increases fat deposition in humans, we have investigated the molecular basis of such effects focusing on a commonly studied polymorphism in pig Pgc1α, which changes a cysteine at position 430 (WT) of the protein to a serine (C430S). Biochemical analyses show that Pgc1α WT stimulates higher expression of human PCK1 in HEK293T and HepG2 cells. Paradoxically, Pgc1α WT is less stable than Pgc1α p.C430S in HEK293T cells. However, the study of different post-translational modifications shows a higher O-GlcNAcylation level of Pgc1α p.C430S. This higher O-GlcNAcylation level significantly decreases the interaction between Pgc1α and PPARγ demonstrating the importance of post-translational glycosylation of PGC1α in the regulation of PCK1 activity. This, furthermore, could explain at least in part the observed epistatic effects between PGC1α and PCK1 in pigs.


Assuntos
Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Sequência de Aminoácidos , Animais , Epistasia Genética , Glucose/metabolismo , Glicosilação , Células HEK293 , Células Hep G2 , Humanos , PPAR gama/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Fenótipo , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Processamento de Proteína Pós-Traducional , Estabilidade Proteica , RNA Mensageiro/metabolismo , Homologia de Sequência de Aminoácidos , Suínos
5.
Int J Mol Sci ; 17(6)2016 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-27322259

RESUMO

Human Amylin, or islet amyloid polypeptide (hIAPP), is a small hormone secreted by pancreatic ß-cells that forms aggregates under insulin deficiency metabolic conditions, and it constitutes a pathological hallmark of type II diabetes mellitus. In type II diabetes patients, amylin is abnormally increased, self-assembled into amyloid aggregates, and ultimately contributes to the apoptotic death of ß-cells by mechanisms that are not completely understood. We have screened a library of approved drugs in order to identify inhibitors of amylin aggregation that could be used as tools to investigate the role of amylin aggregation in type II diabetes or as therapeutics in order to reduce ß-cell damage. Interestingly, three of the compounds analyzed-benzbromarone, quercetin, and folic acid-are able to slow down amylin fiber formation according to Thioflavin T binding, turbidimetry, and Transmission Electron Microscopy assays. In addition to the in vitro assays, we have tested the effect of these compounds in an amyloid toxicity cell culture model and we have found that one of them, quercetin, has the ability to partly protect cultured pancreatic insulinoma cells from the cytotoxic effect of amylin. Our data suggests that quercetin can contribute to reduce oxidative damage in pancreatic insulinoma ß cells by modulating the aggregation propensity of amylin.


Assuntos
Amiloide/antagonistas & inibidores , Benzobromarona/farmacologia , Ácido Fólico/farmacologia , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Agregação Patológica de Proteínas/metabolismo , Quercetina/farmacologia , Animais , Células HeLa , Humanos , Ratos
6.
PLoS One ; 8(10): e78205, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24205158

RESUMO

When the value of a quantity x for a number of systems (cells, molecules, people, chunks of metal, DNA vectors, so on) is measured and the aim is to replicate the whole set again for different trials or assays, despite the efforts for a near-equal design, scientists might often obtain quite different measurements. As a consequence, some systems' averages present standard deviations that are too large to render statistically significant results. This work presents a novel correction method of a very low mathematical and numerical complexity that can reduce the standard deviation of such results and increase their statistical significance. Two conditions are to be met: the inter-system variations of x matter while its absolute value does not, and a similar tendency in the values of x must be present in the different assays (or in other words, the results corresponding to different assays must present a high linear correlation). We demonstrate the improvements this method offers with a cell biology experiment, but it can definitely be applied to any problem that conforms to the described structure and requirements and in any quantitative scientific field that deals with data subject to uncertainty.


Assuntos
Bioensaio/métodos , Redes Reguladoras de Genes/genética , Humanos , Proteínas de Membrana/genética , Proteínas Mitocondriais/genética
7.
J Med Chem ; 55(22): 9521-30, 2012 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-23009151

RESUMO

Alzheimer's disease, characterized by deposits of amyloid ß-peptide (Aß), is the most common neurodegenerative disease, but it still lacks a specific treatment. We have discovered five chemically unrelated inhibitors of the in vitro aggregation of the Aß17-40 peptide by screening two commercial chemical libraries. Four of them (1-4) exhibit relatively low MCCs toward HeLa cells (17-184 µM). The usefulness of compounds 1-4 to inhibit the in vivo aggregation of Aß1-42 has been demonstrated using two fungi models, Saccharomyces cerevisiae and Podospora anserina, previously transformed to express Aß1-42. Estimated IC(50)s are around 1-2 µM. Interestingly, addition of any of the four compounds to sonicated preformed P. anserina aggregates completely inhibited the appearance of SDS-resistant oligomers. This combination of HTP in vitro screening with validation in fungi models provides an efficient way to identify novel inhibitory compounds of Aß1-42 aggregation for subsequent testing in animal models.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Proliferação de Células/efeitos dos fármacos , Compostos Heterocíclicos/farmacologia , Fragmentos de Peptídeos/metabolismo , Podospora/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos dos fármacos , Peptídeos beta-Amiloides/antagonistas & inibidores , Western Blotting , Células HeLa , Compostos Heterocíclicos/química , Ensaios de Triagem em Larga Escala , Humanos , Fragmentos de Peptídeos/antagonistas & inibidores , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real
8.
FEBS Lett ; 585(19): 2935-42, 2011 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-21856303

RESUMO

Bcl-XL is a pro-survival member of the Bcl-2 family that can be found in the outer mitochondrial membrane and in soluble cytosolic homodimers. Bcl-XL can bind pro-apoptotic members of this family preventing them from activating the execution phase of apoptosis. Bcl-XL has been shown to homodimerize in different ways, although most binding and structural assays have been carried out in the absence of its carboxyl terminal transmembrane domain. We show here that this domain can by itself direct protein oligomerization, which could be related to its previously reported role in mitochondrial morphology alterations and apoptosis inhibition.


Assuntos
Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Multimerização Proteica , Proteína bcl-X/química , Proteína bcl-X/metabolismo , Apoptose/fisiologia , Sítios de Ligação , Células HEK293 , Células HeLa , Humanos , Proteínas de Membrana/genética , Proteínas Mitocondriais/genética , Ligação Proteica , Estrutura Terciária de Proteína , Proteína 2 Associada à Membrana da Vesícula/genética , Proteína 2 Associada à Membrana da Vesícula/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Proteína bcl-X/genética
9.
Eur J Cell Biol ; 87(5): 325-34, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18375015

RESUMO

Presenilin 1-associated protein/mitochondrial carrier homolog 1 (PSAP/Mtch1) is a proapoptotic outer mitochondrial membrane protein first identified as a presenilin 1-associated protein. The mechanism by which it induces apoptosis upon overexpression in cultured cells is so far unknown. We had previously reported that deletion of two independent regions of PSAP/Mtch1 is required to prevent apoptosis. We now report that mitochondrial targeting of the region containing both proapoptotic domains, or any of them independently, to the outer membrane is sufficient to induce apoptosis. On the other hand, targeting of that region to the surface of the endoplasmic reticulum does not induce apoptosis, indicating that attachment of those domains to the outer mitochondrial membrane, and not just cytosolic exposure, is a requisite for apoptosis. Overexpression of PSAP/Mtch1 in cultured cells causes mitochondrial depolarization and apoptosis that does not depend on Bax or Bak, since apoptosis is induced in mouse embryonic fibroblasts lacking these two proteins. Our results suggest that apoptosis induced by PSAP/Mtch1 likely involves the permeability transition pore.


Assuntos
Apoptose , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Animais , Linhagem Celular , Humanos , Camundongos , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Estrutura Terciária de Proteína , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo
10.
Am J Physiol Cell Physiol ; 293(4): C1347-61, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17670888

RESUMO

Presenilin 1-associated protein (PSAP) was first identified as a protein that interacts with presenilin 1. It was later reported that PSAP is a mitochondrial protein that induces apoptosis when overexpressed in cultured cells. PSAP is also known as mitochondrial carrier homolog 1 (Mtch1). In this study, we show that there are two proapoptotic PSAP isoforms generated by alternative splicing that differ in the length of a hydrophilic loop located between two predicted transmembrane domains. Using RT-PCR and Western blot assays, we determined that both isoforms are expressed in human and rat tissues as well as in culture cells. Our results indicate that PSAP is an integral mitochondrial outer membrane protein, although it contains a mitochondrial carrier domain conserved in several inner membrane carriers, which partially overlaps one of the predicted transmembrane segments. Deletion of this transmembrane segment impairs mitochondrial import of PSAP. Replacement of this segment with each of two transmembrane domains, with opposite membrane orientations, from an unrelated protein indicated that one of them allowed mitochondrial localization of the PSAP mutant, whereas the other one did not. Our interpretation of these results is that PSAP contains multiple mitochondrial targeting motifs dispersed along the protein but that a transmembrane domain in the correct position and orientation is necessary for membrane insertion. The amino acid sequence within this transmembrane domain may also be important. Furthermore, two independent regions in the amino terminal side of the protein are responsible for its proapoptotic activity. Possible implications of these findings in PSAP function are discussed.


Assuntos
Apoptose/fisiologia , Proteínas de Membrana/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Sinais Direcionadores de Proteínas/fisiologia , Processamento Alternativo , Sequência de Aminoácidos , Animais , Linhagem Celular , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Microscopia de Fluorescência , Mitocôndrias/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Dados de Sequência Molecular , Mutação , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Sinais Direcionadores de Proteínas/genética , Estrutura Terciária de Proteína , Transporte Proteico/fisiologia , Ratos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos , Transfecção
11.
Am J Physiol Renal Physiol ; 292(1): F230-42, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16926447

RESUMO

The function of the NaPiIIa renal sodium-phosphate transporter is regulated through a complex network of interacting proteins. Several PDZ domain-containing proteins interact with its COOH terminus while the small membrane protein MAP17 interacts with its NH(2) end. To elucidate the function of MAP17, we identified its interacting proteins using both bacterial and mammalian two-hybrid systems. Several PDZ domain-containing proteins, including the four NHERF proteins, as well as NaPiIIa and NHE3, were found to bind to MAP17. The interactions of MAP17 with the NHERF proteins and with NaPiIIa were further analyzed in opossum kidney (OK) cells. Expression of MAP17 alone had no effect on the NaPiIIa apical membrane distribution, but coexpression of MAP17 and NHERF3 or NHERF4 induced internalization of NaPiIIa, MAP17, and the PDZ protein to the trans-Golgi network (TGN). This effect was not observed when MAP17 was cotransfected with NHERF1/2 proteins. Inhibition of protein kinase C (PKC) prevented expression of the three proteins in the TGN. Activation of PKC in OK cells transfected only with MAP17 induced complete degradation of MAP17 and NaPiIIa. When lysosomal degradation was prevented, both proteins accumulated in the TGN. When the dopamine D1-like receptor was activated with fenoldopam, both NaPiIIa and MAP17 also accumulated in the TGN. Finally, cotransfection of MAP17 and NHERF3 prevented the adaptive upregulation of phosphate transport activity in OK cells in response to low extracellular phosphate. Therefore, the interaction between MAP17, NHERF3/4, and NaPiIIa in the TGN could be an important intermediate or alternate path in the internalization of NaPiIIa.


Assuntos
Complexo de Golgi/metabolismo , Proteínas de Membrana/fisiologia , Gambás/metabolismo , Fosfoproteínas/fisiologia , Trocadores de Sódio-Hidrogênio/fisiologia , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/fisiologia , Animais , Células Cultivadas , Clonagem Molecular , Cicloeximida/farmacologia , DNA Complementar/biossíntese , DNA Complementar/genética , Dopamina/farmacologia , Glutationa/metabolismo , Masculino , Proteínas de Membrana/genética , Membranas/metabolismo , Camundongos , Microscopia de Fluorescência , Microvilosidades/metabolismo , Mutagênese Sítio-Dirigida , Hibridização de Ácido Nucleico , Fosfoproteínas/genética , Inibidores da Síntese de Proteínas/farmacologia , Ratos , Ratos Wistar , Trocadores de Sódio-Hidrogênio/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/genética , Frações Subcelulares/metabolismo , Transfecção , Translocação Genética
12.
J Biol Chem ; 281(1): 374-82, 2006 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-16263719

RESUMO

Mitochondrial DNA polymerase gamma (pol gamma) is responsible for replication and repair of mtDNA and is mutated in individuals with genetic disorders such as chronic external ophthalmoplegia and Alpers syndrome. pol gamma is also an adventitious target for toxic side effects of several antiviral compounds, and mutation of its proofreading exonuclease leads to accelerated aging in mouse models. We have used a variety of physical and functional approaches to study the interaction of the human pol gamma catalytic subunit with both the wild-type accessory factor, pol gammaB, and a deletion derivative that is unable to dimerize and consequently is impaired in its ability to stimulate processive DNA synthesis. Our studies clearly showed that the functional human holoenzyme contains two subunits of the processivity factor and one catalytic subunit, thereby forming a heterotrimer. The structure of pol gamma seems to be variable, ranging from a single catalytic subunit in yeast to a heterodimer in Drosophila and a heterotrimer in mammals.


Assuntos
DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/genética , Mitocôndrias/genética , DNA Polimerase gama , Reparo do DNA , Replicação do DNA , DNA Mitocondrial/genética , Humanos , Mutação , Subunidades Proteicas/química , Ressonância de Plasmônio de Superfície
13.
J Biol Chem ; 277(51): 50008-14, 2002 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-12379656

RESUMO

We have recently reported the crystal structure of the accessory subunit of mitochondrial DNA polymerase, pol gammaB, and identified a region of the protein involved in DNA binding. The DNA employed in previous studies was presumed to be single-stranded, because it was generated by single-sided PCR. Further characterization of this DNA indicated that, due to a strand transfer event during synthesis by single-sided PCR, the DNA adopts a double-stranded hairpin conformation under native conditions. We used a series of double- and single-stranded oligonucleotides of different lengths to confirm that human pol gammaB prefers to bind double-stranded DNA longer than 40 bp with little apparent sequence specificity. Site-specific deletion mutagenesis identified clusters of basic residues in two surface loops required for DNA binding located on opposite sides of the symmetrical pol gammaB dimer. A heterodimer of pol gammaB that contains one mutant and one wild-type DNA binding region was shown to be unable to bind double-stranded DNA, suggesting that a single DNA molecule must contact both DNA binding sites in the pol gammaB dimer. The ability to bind double-stranded DNA is not essential for pol gammaB stimulation of pol gammaA activity in vitro, but may play a role in DNA replication or repair.


Assuntos
DNA Polimerase Dirigida por DNA/metabolismo , Sequência de Bases , Domínio Catalítico , DNA/metabolismo , DNA Polimerase gama , Replicação do DNA , DNA Polimerase Dirigida por DNA/química , Dimerização , Relação Dose-Resposta a Droga , Deleção de Genes , Humanos , Modelos Genéticos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese , Mutação , Oligonucleotídeos/química , Reação em Cadeia da Polimerase , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Purinas/química , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...